
FSDL Lecture 12: Research Directions
Video and Slides by Pieter Abbeel - posted on the FSDL Course Website
Notes were taken by James Le and Vishnu Rachakonda

Of all disciplines, deep learning is probably the one where research and practice are
closest together. Often, something gets invented in research and is put into production in less
than a year. Therefore, it’s good to be aware of research trends that you might want to
incorporate in projects you are working on.

Because the number of ML and AI papers increases exponentially, there’s no way that you can
read every paper. Thus, you need other methods to keep up with research. This lecture
provides a sampling of research directions, the overall research theme running across these
samples, and advice on keeping up with the relentless flood of new research.

1 - Unsupervised Learning
Deep supervised learning, the default way of doing ML, works! But it requires so much
annotated data. Can we get around it by learning with fewer labels? The answer is yes! And
there are two major approaches: deep semi-supervised learning and deep unsupervised
learning.

Deep Semi-Supervised Learning
Semi-supervised means half supervised, half unsupervised. Assuming a classification problem
where each data point belongs to one of the classes, we attempt to come up with an intuition to
complete the labeling for the unlabeled data points. One way to formalize this is: If anything is
close to a labeled example, then it will assume that label. Thus, we can propagate the labels out
from where they are given to the neighboring data points.

How can we generalize the approach above to image classification?

https://www.youtube.com/watch?v=APZ0ZUcmlsU
https://drive.google.com/file/d/1bfiTq_JZaujrQ250BOIkFkvlwoHUo2-_/view
https://twitter.com/pabbeel
https://fullstackdeeplearning.com/spring2021/lecture-12/
https://twitter.com/le_james94
https://www.linkedin.com/in/vrachakonda/

Xie et al. (2020) proposes Noisy Student Training:
● First, they train a teacher model with labeled data.
● Then, they infer pseudo-labels on the unlabeled data. These are not real labels, but

those that they get from using the trained teacher model.
● Even though these labels are not perfect (because they train on a small amount of

labeled data), they can still see where they are more confident about those pseudo
labels and inject those into their training set as additional labeled data.

● When they retrain, they use dropout, data augmentation, and stochastic depth to inject
noise into the training process. This enables the student model to be more robust and
generalizable.

Deep Unsupervised Learning
Deep semi-supervised learning assumes that the labels in the supervised dataset are still valid
for the unsupervised dataset. There’s a limit to the applicability because we assume that the
unlabeled data is roughly from the same distribution as the labeled data.

With deep unsupervised learning, we can transfer the learning with multi-headed networks.

https://arxiv.org/abs/1911.04252

● First, we train a neural network. Then, we have two tasks and give the network two
heads - one for task 1 and another for task 2.

● Most parameters live in the shared trunk of the network’s body. Thus, when you train for
task 1 and task 2, most of the learnings are shared. Only a little bit gets specialized to
task 1 versus task 2.

The key hypothesis here is that: For task 1 (which is unsupervised), if the neural network is
smart enough to do things like predicting the next word in a sentence, generating realistic
images, or translating images from one scale to another; then that same neural network is ready
to do deep supervised learning from a very small dataset for task 2 (what we care about).

GPT-2
For instance, task 1 could be predicting the next word in a sentence, while task 2 could be
predicting the sentiment in a corpus. OpenAI’s GPT-2 is the landmark result for next-word
prediction where deep unsupervised learning could work. The results were so realistic, and
there was a lot of press coverage. OpenAI deemed it to be too dangerous to be released at the
time.

Furthermore, GPT-2 can tackle complex common sense reasoning and question answering
tasks for various benchmarks. The table below displays those benchmarks where GPT-2 was
evaluated on. The details of the tasks do not really matter. What’s more interesting is that: This
is the first time a model, trained unsupervised on a lot of text to predict the next token and
fine-tuned to specific supervised tasks, beats prior methods that might have been more
specialized to each of these supervised tasks.

https://openai.com/blog/better-language-models/

Another fascinating insight is that as we grow the number of model parameters, the
performance goes up consistently. This means with unsupervised learning, we can
incorporate much more data for larger models. This research funding inspired OpenAI to
fundraise $1B for future projects to essentially have more compute available to train larger
models because it seems like doing that will lead to better results. So far, that has been true
(GPT-3 performs better than GPT-2).

BERT
BERT is Google’s approach that came out around the same time as GPT-2. While GPT-2
predicts the next word or token, BERT predicts a word or token that was removed. In this task,
the neural network looks at the entire corpus as it fills things back in, which often helps in later
tasks (as the neural network has already been unsupervised-train on the entire text).

The table below displays BERT’s performance on the GLUE benchmark. The takeaway
message is not so much in the details of these supervised tasks; but the fact that these tasks
have a relatively small amount of labeled data compared to the unsupervised training that
happens ahead of time. As BERT outperformed all SOTA methods, it revolutionized how
natural language processing should be done.

https://openai.com/blog/openai-api/
https://arxiv.org/abs/1810.04805
https://gluebenchmark.com/

BERT is one of the biggest updates that Google has made since RankBrain in 2015 and has
proven successful in comprehending the intent of the searcher behind a search query.

Unsupervised Learning In Vision
Can we do the same thing for vision tasks? Let’s explore a few of them.

● Predict A Missing Patch: A patch is high-dimensional, so the number of possibilities in
that patch is very high (much larger than the number of words in English, for instance).
Therefore, it’s challenging to predict precisely and make that work as well as in
languages.

● Solve Jigsaw Puzzles: If the network can do this, it understands something about
images of the world. The trunk of the network should hopefully be reusable.

● Predict Rotation: Here, you collect random images and predict what degree has been
rotated. Existing methods work immensely well for such a task.

A technique that stood out in recent times is contrastive learning, which includes two variants -
SimCLR (Chen et al., 2020) and MoCo (He et al., 2019). Here’s how you train your model with
contrastive learning:

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1911.05722

● Imagine that you download two images of a dog and a cat from the Internet, and you
don’t have labels yet.

● You duplicate the dog image and make two versions of it (a greyscale version and a
cropped version).

● For these two dog versions, the neural network should bring them together while pushing
the cat image far away.

You then fine-tune with a simple linear classifier on top of training completely unsupervised. This
means that you must get the right features extracted from the images during training. The
results of contrastive learning methods confirm that the higher the number of model parameters,
the better the accuracy.

2 - Reinforcement Learning
Reinforcement learning (RL) has not been practical yet but nevertheless has shown promising
results. In RL, the AI is an agent, more so than just a pattern recognizer. The agent acts in an
environment where it is goal-oriented. It wants to achieve something during the process, which
is represented by a reward function.

Challenges
Compared to unsupervised learning, RL brings about a host of additional challenges:

● Credit assignment: When the RL agent sees something, it has to take action. But it is
not told whether the action was good or bad right away.

● Stability: Because the RL agent learns by trial and error, it can destabilize and make big
mistakes. Thus, it needs to be clever in updating itself not to destroy things along the
way.

● Exploration: The RL agent has to try things that have not been done before.

https://mitpress.mit.edu/books/reinforcement-learning

Despite these challenges, some great RL successes have happened.

Successes
DeepMind has shown that neural networks can learn to play the Atari game back in 2013.
Under the hood is the Deep Q-Network architecture, which was trained from its own
trial-and-error, looking at the score in the game to internalize what actions might be good or bad.

The game of Go was cracked by DeepMind - showing that the computer can play better than
the best human player (AlphaGo, AlphaGoZero, and AlphaZero).

RL also works for the robot locomotion task. You don’t have to design the controller yourself.
You just implement the RL algorithm (TRPO, GAE, DDPG, PPO, and more) and let the agent
train itself, which is a general approach to have AI systems acquire new skills. In fact, the robot
can acquire such a variety of skills, as demonstrated in this DeepMimic work.

You can also accomplish the above for non-human-like characters in dynamic animation tasks.
This is going to change how you can design video games or animated movies. Instead of
designing the keyframes for every step along the way in your video or your game, you can train
an agent to go from point A to point B directly.

RL has been shown to work on real robots.
● BRETT (Berkeley Robot for the Elimination of Tedious Tasks) could learn to put blocks

into matching openings in under an hour using a neural network trained from scratch.
This technique has been used for NASA SuperBall robots for space exploration ideas.

● A similar idea was applied to robotic manipulation solving Rubik’s cube, done at
OpenAI in 2019. The in-hand manipulation is a very difficult robotic control problem that
was mastered with RL.

https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature24270
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1707.06347
https://xbpeng.github.io/projects/DeepMimic/index.html
https://engineering.berkeley.edu/brett/
https://rll.berkeley.edu/drl_tensegrity/
https://openai.com/blog/solving-rubiks-cube/

CovariantAI

The fact that RL worked so well actually inspired Pieter and his former students (Tianhao
Zhang, Rocky Duan, and Peter Chen) to start a company called Covariant in 2017. Their goal is
to bring these advances from the lab into the real world. An example is autonomous order
picking.

3 - Unsupervised Reinforcement Learning
RL achieved mastery on many simulated domains. But we must ask the question: How fast is
the learning itself? Tsividis et al., 2017 shows that a human can learn in about 15 minutes to
perform better than Double DQN (a SOTA approach at the time of the study) learned after 115
hours.

How can we bridge this learning gap?
Based on the 2018 DeepMind Control Suite, pixel-based learning needs 50M more training
steps than state-based learning to solve the same tasks. Maybe we can develop an
unsupervised learning approach to turn pixel-level representations (which are not that
informative) into a new representation that is much more similar to the underlying state.

https://covariant.ai/
https://www.nytimes.com/2020/01/29/technology/warehouse-robot.html
https://www.nytimes.com/2020/01/29/technology/warehouse-robot.html
http://cbmm.mit.edu/sites/default/files/publications/Tsividis%20et%20al%20-%20Human%20Learning%20in%20Atari.pdf
https://arxiv.org/abs/1801.00690

CURL brings together contrastive learning and RL.
● In RL, there’s typically a replay buffer where we store the past experiences. We load

observations from there and feed them into an encoder neural network. The network has
two heads: an actor to estimate the best action to take next and a critic to estimate how
good that action would be.

● CURL adds an extra head at the bottom, which includes augmented observations, and
does contrastive learning on that. Similar configurations of the robot are brought closer
together, while different ones are separated.

The results confirm that CURL can match existing SOTA approaches that learn from states and
from pixels. However, it struggles in hard environments, with insufficient labeled images being
the root cause.

4 - Meta Reinforcement Learning
The majority of fully general RL algorithms work well for any environments that can be
mathematically defined. However, environments encountered in the real world are a tiny subset
of all environments that could be defined. Maybe the learning takes such a long time because
the algorithms are too general. If they are a bit more specialized in things they will encounter,
perhaps the learning is faster.

Can we develop a fast RL algorithm to take advantage of this?

In traditional RL research, human experts develop the RL algorithm. However, there are still no
RL algorithms nearly as good as humans after many years. Can we learn a better RL algorithm?
Or even learn a better entire agent?

https://arxiv.org/abs/2004.04136

RL^2

RL^2 (Duan et al., 2016) is a meta-RL framework proposed to tackle this issue:
● Imagine that we have multiple meta-training environments (A, B, and so on).
● We also have a meta-RL algorithm that learns the RL algorithm and outputs a “fast” RL

agent (from having interacted with these environments).
● In the future, our agent will be in an environment F that is related to A, B, and so on.

Formally speaking, RL^2 maximizes the expected reward on the training Markov Decision
Process (MDP) but can generalize to testing MDP. The RL agent is represented as a Recurrent
Neural Network (RNN), a generic computation architecture where:

● Different weights in the RNN mean different RL algorithms and priors.
● Different activations in the RNN mean different current policies.
● The meta-trained objective can be optimized with an existing “slow” RL algorithm.
● The resulting RNN is ready to be dropped in a new environment.

RL^2 was evaluated on a classic Multi-Armed Bandit setting and performed better than
provably (asymptotically) optimal RL algorithms invented by humans like Gittings Index, UCB1,
and Thompson Sampling. Another task that RL^2 was evaluated on is visual navigation, where
the agent explores a maze and finds a specified target as quickly as possible. Although this
setting is maze-specific, we can scale up RL^2 to other large-scale games and robotic
environments and use it to learn in a new environment quickly.

Learn More
● Schmidhuber. Evolutionary principles in self-referential learning. (1987)
● Wiering, Schmidhuber. Solving POMDPs with Levin search and EIRA. (1996)
● Schmidhuber, Zhao, Wiering. Shifting inductive bias with success-story algorithm,

adaptive Levin search, and incremental self-improvement. (MLJ 1997)

https://arxiv.org/abs/1611.02779
http://www.idsia.ch/~juergen/diploma.html
https://people.idsia.ch/~juergen/icmllevineira/icmllevineira.html
https://link.springer.com/article/10.1023/A:1007383707642
https://link.springer.com/article/10.1023/A:1007383707642

● Schmidhuber, Zhao, Schraudolph. Reinforcement learning with self-modifying policies
(1998)

● Zhao, Schmidhuber. Solving a complex prisoner’s dilemma with self-modifying policies.
(1998)

● Schmidhuber. A general method for incremental self-improvement and multiagent
learning. (1999)

● Singh, Lewis, Barto. Where do rewards come from? (2009)
● Singh, Lewis, Barto. Intrinsically Motivated Reinforcement Learning: An Evolutionary

Perspective (2010)
● Niekum, Spector, Barto. Evolution of reward functions for reinforcement learning (2011)
● Wang et al., (2016). Learning to Reinforcement Learn
● Finn et al., (2017). Model-Agnostic Meta-Learning (MAML)
● Mishra, Rohinenjad et al., (2017). Simple Neural AttentIve Meta-Learner
● Frans et al., (2017). Meta-Learning Shared Hierarchies

5 - Few-Shot Imitation Learning
People often complement RL with imitation learning, which is basically supervised learning
where the output is an action for an agent. This gives you more signal than traditional RL since
for every input, you consistently have a corresponding output. As the diagram below shows, the
imitation learning algorithm learns a policy in a supervised manner from many demonstrations
and outputs the correct action based on the environment.

The challenge for imitation learning is to collect enough demonstrations to train an
algorithm, which is time-consuming. To make the collection of demonstrations more efficient,
we can apply multi-task meta-learning. Many demonstrations for different tasks can be learned
by an algorithm, whose output is fed to a one-shot imitator that picks the correct action based on
a single demonstration. This process is referred to as one-shot imitation learning (Duan et al.,
2017), as displayed below.

https://link.springer.com/chapter/10.1007/978-1-4615-5529-2_12
https://ieeexplore.ieee.org/document/6278758
ftp://ftp.idsia.ch/pub/juergen/xinbook.pdf
ftp://ftp.idsia.ch/pub/juergen/xinbook.pdf
https://escholarship.org/uc/item/2v29r0b6
https://ieeexplore.ieee.org/document/5471106
https://ieeexplore.ieee.org/document/5471106
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1595/2319
https://arxiv.org/abs/1611.05763
https://arxiv.org/abs/1703.03400?spm=smwp.content.content.1.1533427200036hOtrcXw
https://arxiv.org/abs/1707.03141
https://arxiv.org/abs/1710.09767
https://arxiv.org/abs/1703.07326
https://arxiv.org/abs/1703.07326

Conveniently, one-shot imitators are trained using traditional network architectures. A
combination of CNNs, RNNs, and MLPs perform the heavy visual processing to understand the
relevant actions in training demos and recommend the right action for the current frame of an
inference demo. One example of this in action is block stacking.

Learn More
● Abbeel et al., (2008). Learning For Control From Multiple Demonstrations
● Kolter, Ng. The Stanford LittleDog: A Learning And Rapid Replanning Approach To

Quadrupled Locomotion (2008)
● Ziebart et al., (2008). Maximum Entropy Inverse Reinforcement Learning
● Schulman et al., (2013). Motion Planning with Sequential Convex Optimization and

Convex Collision Checking

http://www.roboticsproceedings.org/rss14/p09.pdf
https://ai.stanford.edu/~ang/papers/icml08-LearningForControlFromMultipleDemonstrations.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.975.1072&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.975.1072&rep=rep1&type=pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://dl.acm.org/doi/10.1177/0278364914528132
https://dl.acm.org/doi/10.1177/0278364914528132

● Finn, Levine. Deep Visual Foresight for Planning Robot Motion (2016)

6 - Domain Randomization
Simulated data collection is a logical substitute for expensive real data collection. It is less
expensive, more scalable, and less dangerous (e.g., in the case of robots) to capture at scale.
Given this logic, how can we make sure simulated data best matches real-world conditions?

Use Realistic Simulated Data

One approach is to make the simulator you use for training models as realistic as possible. Two
variants of doing this are to carefully match the simulation to the world (James and John,
2016; Johns, Leutenegger, and Division, 2016; Mahler et al., 2017; Koenemann et al., 2015)
and augment simulated data with real data (Richter et al., 2016; Bousmalis et al., 2017).
While this option is logically appealing, it can be hard and slow to do in practice.

https://arxiv.org/abs/1610.00696
https://arxiv.org/abs/1609.03759
https://arxiv.org/abs/1609.03759
https://arxiv.org/abs/1608.02239
https://arxiv.org/abs/1709.06670
https://hal.archives-ouvertes.fr/hal-01137021/document
https://arxiv.org/abs/1608.02192
https://arxiv.org/abs/1709.07857

Domain Confusion

Another option is domain confusion (Tzeng et al., 2014; Rusu et al., 2016).
● In this approach, suppose you train a model on real and simulated data at the same

time.
● After completing training, a discriminator network examines the original network at some

layer to understand if the original network is learning something about the real world.
● If you can fool the discriminator with the output of the layer, the original network has

completely integrated its understanding of real and simulated data.
● In effect, there is no difference between simulated and real data to the original network,

and the layers following the examined layer can be trained fully on simulated data.

https://arxiv.org/abs/1412.3474
https://arxiv.org/abs/1610.04286

Domain Randomization

Finally, a simpler approach called domain randomization (Tobin et al., 2017; Sadeghi and
Levine, 2016) has taken off of late. In this approach, rather than making simulated data fully
realistic, the priority is to generate as much variation in the simulated data as possible. For
example, in the below tabletop scenes, the dramatic variety of the scenes (e.g., background
colors of green and purple) can help the model generalize well to the real world, even though
the real world looks nothing like these scenes. This approach has shown promise in drone flight
and pose estimation. The simple logic of more data leading to better performance in real-world
settings is powerfully illustrated by domain randomization and obviates the need for existing
variation methods like pre-training on ImageNet.

7 - Deep Learning For Science and Engineering

AlphaFold
In other areas of this lecture, we’ve been focusing on research areas of machine learning where
humans already perform well (i.e., pose estimation or grasping). In science and engineering
applications, we enter the realm of machine learning performing tasks humans cannot. The
most famous result is AlphaFold, a Deepmind-created system that solved protein folding, an
important biological challenge. In the CASP challenge, AlphaFold 2 far outpaced all other
results in performance. AlphaFold is quite complicated, as it maps an input protein sequence to
similar protein sequences and subsequently decides the folding structure based on the
evolutionary history of complementary amino acids.

https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1703.06907
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Other examples of DL systems solving science and engineering challenges are in circuit design,
high-energy physics, and symbolic mathematics.

Learn More
● AlphaFold: Improved protein structure prediction using potentials from deep learning.

Deepmind (Senior et al.)
● BagNet: Berkeley Analog Generator with Layout Optimizer Boosted with Deep Neural

Networks. K. Hakhamaneshi, N. Werblun, P. Abbeel, V. Stojanovic. IEEE/ACM
International Conference on Computer-Aided Design (ICAD), Westminster, Colorado,
November 2019.

● Evaluating Protein Transfer Learning with TAPE. R. Rao, N. Bhattacharya, N. Thomas,
Y, Duan, X. Chen, J. Canny, P. Abbeel, Y. Song.

● Opening the black box: the anatomy of a deep learning atomistic potential. Justin Smith
● Exploring Machine Learning Applications to Enable Next-Generation Chemistry. Jennifer

Wei (Google).
● GANs for HEP. Ben Nachman
● Deep Learning for Symbolic Mathematics. G. Lample and F. Charton.
● A Survey of Deep Learning for Scientific Discovery. Maithra Raghu, Eric Schmidt.

8 - Overarching Research Theme
As compute scales to support incredible numbers of FLOPs, more science and engineering
challenges will be solved with deep learning systems. There has been exponential growth in the
amount of compute used to generate the most impressive research results like GPT-3.

https://arxiv.org/pdf/1907.10515.pdf
https://analyticsindiamag.com/gans-deep-learning-physics-atomic-material-science-john-hopkins/
https://arxiv.org/abs/1912.01412
https://www.nature.com/articles/s41586-019-1923-7
https://arxiv.org/abs/1907.10515
https://arxiv.org/abs/1907.10515
https://www.biorxiv.org/content/10.1101/676825v1
https://drive.google.com/file/d/1f1iiXKzxNbNz5lL5x2ob9xGYLHNHhxeU/view
https://docs.google.com/presentation/d/1zGoxOMWmid25hgtSgVkQYu1-GP9PT3EQ2_tzOlQZcF4/edit#slide=id.p1
https://drive.google.com/file/d/1op6Q6OuVZvJ4VbtLkemi3oJWtSBx5FCc/view
https://openreview.net/pdf?id=S1eZYeHFDS
https://arxiv.org/abs/2003.11755

As compute and data become more available, we open a new problem territory that we can
refer to as deep learning to learn. More specifically, throughout history, the constraint on
solving problems has been human ingenuity. This is a particularly challenging realm to
contribute novel results to because we’re competing against the combined intellectual might
available throughout history. Is our present ingenuity truly greater than that of others 20-30
years ago, let alone 200-300? Probably not. However, our ability to bring new tools like compute
and data most certainly is. Therefore, spending as much time in this new problem territory,
where data and compute help solve problems, is likely to generate exciting and novel results
more frequently in the long run.

9 - How To Keep Up
“Give a man a fish and you feed him for a day, teach a man to fish and you feed him for a

lifetime” (Lao Tzu)

Here are some tips on how to keep up with ML research:
● (Mostly) don’t read (most) papers. There are just too many!
● When you do want to keep up, use the following:

○ Tutorials at conferences: these capture the essence of important concepts in a
practical, distilled way

○ Graduate courses and seminars
○ Yannic Kilcher YouTube channel
○ Two Minutes Paper Channel
○ The Batch by Andrew Ng
○ Import AI by Jack Clark

● If you DO decide to read papers,
○ Follow a principled process for reading papers
○ Use Arxiv Sanity
○ Twitter
○ AI/DL Facebook Group
○ ML Subreddit
○ Start a reading group: read papers together with friends - either everyone reads

then discusses, or one or two people read and give tutorials to others.

https://www.youtube.com/c/YannicKilcher
https://www.youtube.com/channel/UCbfYPyITQ-7l4upoX8nvctg
https://www.deeplearning.ai/the-batch/
https://jack-clark.net/
http://www.arxiv-sanity.com/
https://www.reddit.com/r/MachineLearning/

Finally, should you do a Ph.D. or not?
● You don’t have to do a Ph.D. to work in AI!
● However, if you REALLY want to become one of the world’s experts in a topic you care

about, then a Ph.D. is a technically deep and demanding path to get there. Crudely
speaking, a Ph.D. enables you to develop new tools and techniques rather than using
existing tools and techniques.

